Методические указания и контрольные работы для студентов-заочников icon

Методические указания и контрольные работы для студентов-заочников




НазваниеМетодические указания и контрольные работы для студентов-заочников
страница3/5
Дата конвертации15.07.2013
Размер1.04 Mb.
ТипМетодические указания
источник
1   2   3   4   5

Задача 1. По данным о ценах на молоко и сметану на рынках десяти российских городов постройте линейное уравнение регрессии и оцените тесноту связи:


Цена молока, тыс. руб. (Х)

2.8

1.5

2.5

1.5

8.5

2.0

3.0

3.5

2.0

1.5

Цена сметаны, тыс. руб. (У)

23

12

18

10

30

16

25

26

20

12

Ответ:; .


Тема 7.^ СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ДИНАМИКИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ


Методические указания.


Процесс развития, движения социально-экономических явлений во времени в статистике принято называть динамикой. Для ее отражения строятся ряды динамики.

Ознакомившись с литературой и рассмотрев ряды динамики, опубликованные в статистических ежегодниках и справочниках студент должен уяснить, что такое ряд динамики и как он строится. Особое внимание следует обратить на условия сопоставимости данных, составляющих динамический ряд. При рассмотрении вопросов о видах рядов динамики надо прежде всего понять различие между моментными и интервальными рядами. Построение, обработка и анализ этих рядов во многом определяется их особенностями.

Затем следует перейти к изучению методов расчета аналитических показателей рядов динамики.

В настоящей теме эти показатели должны быть рассмотрены вместе с другими показателями анализа рядов динамики. Следует учесть при этом, что анализ относительных показателей должен производиться во взаимосвязи с анализом абсолютных величин (уровней ряда, абсолютных приростов). С этой точки зрения большое значение имеет исследование абсолютного значения одного процента прироста.

Рассчитывая аналитические показатели ряда динамики, необходимо правильно выбирать базу для сравнения. Этому вопросу следует уделить особое внимание. Необходимо также разобраться в способах получения средних величин ряда: среднего уровня, среднего абсолютного прироста, среднего темпа роста и прироста. Следует помнить, что способ расчета среднего уровня ряда динамики зависит от его вида. При расчете среднего темпа роста необходимо использовать среднюю геометрическую.

При изучении вопросов выявления тенденции ряда динамики необходимо уяснить такие методы выявления тенденции ряда динамики как укрупнение интервала, сглаживание способом скользящих средних, аналитическое выравнивание.

Рассмотрим для примера расчет аналитических показателей ряда динамики по следующим данным:

^ Таблица 12

Число зарегистрированных крестьянских (фермерских) хозяйств в Российской Федерации


Годы

1991

1992

1993

1994

1995

Тыс.

4,4

49,0

182,8

270,0

279,2


На основе этих данных необходимо рассчитать абсолютные приросты, темпы роста и прироста, средний уровень ряда, средний темп роста и прироста, а также абсолютное значение одного процента прироста.

Для расчета абсолютного прироста необходимо из уровня каждого последующего года вычесть уровень предыдущего или начального года (или какого-либо другого, принятого за базу сравнения). Так, например, абсолютный прирост в 1995г. по сравнению с 1994г. составил , а по сравнению с начальным - 1991г. Темп роста представляет собой отношение уровня последующего года к уровню предыдущего или начального. Так для 1995г. темп роста по сравнению с 1994г. составил , а по сравнению с 1991г. .

Темп прироста есть отношение абсолютного прироста к предыдущему или начальному уровню (или какому-либо другому, принятому за базу сравнения). Для 1995г. по сравнению с 1994г. темп роста равен или . Абсолютное значение одного процента прироста получается в результате деления абсолютного прироста по сравнению с предыдущим периодом на соответствующий темп роста, выраженный в процентах.

Приведем в таблице результат расчета всех этих показателей анализа ряда динамики:

Таблица 13

Годы

Число хозяйств, тыс.

()

Абсолютные приросты по сравнению, тыс.

Темп роста,

в % к

Темп прироста,

в % к

Абсолютное значение 1% прироста, тыс.

C преды-дущим

C 1991 годом

Преды-дущему

1991 году

Преды-дущему

1991 году

A

1

2

3

4

5

6

7

8

1991

4,4

-

-

-

100,0

-

0,0

-

1992

49,0

+44,6

+44,6

1113,6

1113,6

1013,6

1013,6

0,044

1993

182,8

+133,8

+178,4

373,1

4154,5

273,1

4054,5

0,49

1994

270,0

+87,2

+265,6

147,7

6136,4

47,7

6036,4

1,83

1995

279,2

+9,2

+274,8

103,4

6345,5

3,4

6245,5

2,70




785,4

274,8

-

-

-

-

-

-

Рассчитаем также средние показатели. Средний уровень ряда динамики числа фермерских хозяйств рассчитывается по формуле средней арифметической простой, поскольку данный ряд интервальный:



Столь же просто находится средний абсолютный прирост:



Для расчета среднего темпа роста используем среднюю геометрическую:

(3) или 100,9%;

Следующей проблемой изучения динамики является выявление основной тенденции, то есть главного направления в изменении изучаемого явления. Речь идет о случаях скрытой тенденции, присущей тому или иному ряду динамику. Например, за колебаниями уровней урожайности какой-либо сельскохозяйственной культуры в отдельные годы тенденция роста урожайности может не просматриваться непосредственно, и поэтому должна быть выявлена статистически.

Из различных методов выявления тенденции, обычно рассматриваемых в учебной литературе (укрупнение интервалов, механическое сглаживание, аналитическое выравнивание), обратите особое внимание на последний. Необходимо учитывать, что аналитическое выравнивание представляет собой частный случай применения метода регрессии к анализу социально-экономических явлений. Этот метод заключается в том, что уровни ряда динамики представляются как функция времени (t):



В качестве примера произведем выравнивание данных о выплавке чугуна по уравнению прямой: .

^ Таблица 14

Таблица исходных данных и расчетных данных (цифры условные)


Годы

Выплавка чугуна












(млн.т)










(млн.т)

1991

108

-2

4

-216

109.36

1992

107

-1

1

-107

109.48

1993

110

0

0

0

109.60

1994

111

+1

1

+111

109.72

1995

112

+2

4

+224

109.84

ИТОГО

548

0

10

+12

548.0


Пояснения к таблице. Первые две графы - исходные уровни ряда динамики дополняются графой, в которой показана система отсчета времени "t". Причем эта система выбирается таким образом, чтобы .

Если число уровней ряда четное, то вместо нуля в центре мы поставили бы единицы с противоположными знаками у двух уровней, находящихся в середине ряда. Тогда разница между годами составляла бы две единицы времени и общий вид систем был бы таким (например, для ряда из 6 уровней):

1990 1991 1992 1993 1994 1995

-5 -3 -1 +1 +3 +5

В случае применения упрощенной системы отсчета времени параметры уравнения находятся по упрощенным формулам:





Таким образом, уравнение, выражающее тенденцию роста выплавки чугуна, имеет вид:



На основе этого уравнения находятся выравненные годовые уровни путем подстановки в него соответствующих значений "t" (они показаны в последней графе таблицы, причем общий объем выплавки чугуна остался неизменным).


Вопросы для самопроверки


1. В чем состоит значение рядов динамики в экономико-статистическом исследовании?

2. Каковы принципы и правила построения рядов динамики?

3. Какие различают виды рядов динамики?

4. Как исчисляется средняя хронологическая интервальных и моментных рядов динамики?

5. Что такое абсолютный уровень ряда динамики, темп роста, абсолютный и относительный прирост, средний темп роста?

6. Какие Вы знаете методы выявления основной тенденции ряда динамики?

7. Какая разница между механическим сглаживанием и аналитическим выравниванием?

8. Что показывают индексы сезонности и как они исчисляются?


Задания для самостоятельной работы


Задача 1. Вычислите цепные и базисные абсолютные приросты, темпы роста и прироста, а также абсолютные значения 1% прироста по следующим данным:


Годы

1991

1992

1993

1994

1995

1996

Валовой сбор зерновых культур области (тыс.т)

140.1

223.8

195.7

237.4

179.3

189.1

Задача 2. По данным задачи N1 рассчитайте средние показатели ряда динамики за 1991-1996 гг.: средний валовой сбор, средний абсолютный прирост валового сбора, средний темп роста и прироста.


Задача 3. По данным задачи N1 произведите аналитическое выравнивание ряда динамики по уравнению прямой и с помощью трехчленной скользящей средней.


Задача 4. Темпы роста выпуска изделия "А" в отрасли составили: в 1994 г. - 101%, 1995 г. - 103%, 1996 г. - 84%. Определите средний годовой темп прироста за 1994-1996 гг.

Ответ: 2,9%.


Задача 5. Исчислите средние товарные запасы за I и II кварталы и за полугодие в целом по нижеследующим данным:


Дата

1/I

1/II

1/III

1/IV

1/V

1/VI

1/VII

Товарные запасы, млн.руб.

22.4

23.5

20.8

22.2

24.6

25.0

26.2


Ответ: 22,2; 24,6; 23,4 млн.руб.


Задача 6. На основании приведенных данных сделайте анализ внутригодовой динамики о реализации картофеля на рынках города; выявите сезонность покупательского спроса на эти продукты, предварительно выравнив ряд по прямой (тыс. ц):


(цифры условные)

Месяцы

1995

1996

Месяцы

1995

1996

Январь

64,3

66,2

Июль

49,7

54,9

Февраль

59,4

62,5

Август

55,0

59,5

Март

55,2

59,9

Сентябрь

55,9

61,9

Апрель

53,2

57,2

Октябрь

62,0

64,9

Май

49,3

55,5

Ноябрь

66,4

68,9

Июнь

46,7

52,9

Декабрь

70,4

73,8


Ответ: 108,3%; 101,5%; 96,1%; 99,1%; 87,9%; 83,8%; 88,3%; 96,9%; 99,9%; 107,9%; 115,1%; 123,2%.


Задача 7. Произведите обработку ряда динамики закупок картофеля в области методом: а) укрупнения интервалов; б) скользящей средней:


Годы

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

Закупки картофеля, тыс.т

11.5

11.1

15.4

11.2

14.5

13.4

17.1

15.0

16.4

11.1


Тема 8. ^ ЭКОНОМИЧЕСКИЕ ИНДЕКСЫ.


Методические указания.


Экономический индекс - это относительная величина, которая характеризует изменение исследуемого явления во времени, в пространстве, или по сравнению с некоторым эталоном (планируемым, нормативным уровнем и т.п.). Если в качестве базы сравнения используется уровень за какой-либо предшествующий период - получают динамический индекс, если же базой является уровень того же явления по другой территории - территориальный индекс. Индексы являются незаменимым инструментом исследования в тех случаях, когда необходимо сравнить во времени или в пространстве две совокупности, элементы которых являются несоизмеримыми величинами.

Изучение данной темы должно базироваться на знании предшествующих разделов курса и, в особенности тем "Теория статистических показателей" и "Статистическое изучение динамики социально-экономических явлений".

Индексы могут быть индивидуальными и сводными. Индивидуальные индексы характеризуют изменение исследуемого показателя по одному товару или виду продукции. Сводные индексы отражают общее изменение по товарной группе или продуктовому ряду предприятия.

Сводный индекс цен может исчисляться в агрегатной, среднеарифметической или среднегармонической формах. Например, для индекса цен имеем:

Агрегатный:

Средний арифметический:

Средний гармонический:

где p - цены, q - количество товаров.

Специфическим вопросом построения индексов является выбор весов. Так, при расчете сводного индекса цен текущие и базисные цены на товары, в большинстве случаев, взвешиваются по объему реализации текущего периода (как это сделано выше), но иногда могут использоваться и базисные веса. Необходимо уяснить, что выбор весов в одном индексе обуславливает их выбор во всех взаимосвязанных с ним индексах.

Приведем примеры индексных расчетов.

Пример 1. Рассчитать индивидуальные и общие индексы товарооборота, физического объема проданных товаров и цен по следующим данным о ценах и реализации (товаров) за два месяца:

Таблица 14


Товары

Январь

Февраль

Индексы (%)

Цена, руб.

Реализация

Цена, руб

Реализация

цен

Физического объема продажи

Товарооборота

кг

руб.

кг

руб.

А

1

2

3

4

5

6

7

8

9

А

10

800

8000

8

750

6000

80

93

75

Б

5

400

2000

5

540

2700

100

135

135

В

2

150

300

3

200

600

150

150

200

Итого

-

-

10300

-

-

9300

87,5

102,7

90,3


Индивидуальные индексы, характеризующие динамику показателей по каждому товару, помещены в графах 7, 8, 9 таблицы по строкам А, Б, В. Они легко получаются путем сравнения соответствующих показателей за январь и февраль (например, индекс цен по товару "А" равен i p = 8:10 = 80%). Сводные индексы записаны по итоговой строке этих колонок. Они рассчитаны следующим образом:



Полученный результат указывает на то, что цены снизились на 12.3%.

Из формулы следует, что индекс цен есть отношение стоимости товаров отчетного периода к стоимости тех же товаров, но по базисным (у нас январским) ценам. Снижение цен привело к удешевлению массы товаров, проданных в феврале в абсолютном выражении на сумму 1300 руб. (10600-9300).

Индекс количества проданных товаров (физического объема товарооборота) рассчитывается как отношение товарооборота отчетного периода по базисным ценам к товарообороту базисного периода:



Следовательно, физический объем продажи возрос на 2,7%.

Индекс товарооборота (стоимости проданных товаров) может быть получен двумя способами:

1) по формуле

2) на основе рассчитанных индексов

.

Если индексы рассчитываются за три и более периодов, то в зависимости от задач исследования и имеющихся данных выбирают один из четырех возможных вариантов построения индексной системы: цепные индексы с переменными или постоянными весами, базисные индексы с переменными или постоянными весами.

Для изучения динамики среднего уровня в статистике используют систему взаимосвязанных индексов, которая включает в себя индекс переменного состава, индекс фиксированного (постоянного) состава, индекс структурных сдвигов. Данные индексы позволяют определить, как изменится средняя величина за счет изменения индивидуальных значений признака и за счет изменения структуры производства или реализации.

Индекс переменного состава определяется по формуле



Данный индекс показывает как изменится средняя цена за счет изменения цен и структуры совокупности.

Индекс фиксированного состава показывает только изменение цен и рассчитывается по формуле:



Индекс структурных сдвигов показывает влияние структурных изменений на динамику средней цены. Он рассчитывается по формуле:



Между этими индексами существует следующая взаимосвязь:



Рассмотрим расчет этих индексов на примере.

Пример 2. По нижеследующим данным определим общий индекс цен на товар "А" в двух формах: фиксированного и переменного состава, а также оценим влияние структурных сдвигов на динамику средней цены:

Таблица 15

Рынки

Цена за 1 кг товара (руб.)

Продано товара (кг)

I кв.

II кв.

I кв.

II кв.

N1

15

12

500

300

N2

10

10

500

700


Индекс цен переменного состава получается как отношение средней цены двух сравниваемых периодов:

или 84,8%

Таким образом, средняя цена товара на двух рынках снизилась на 15,2% во II квартале по сравнению с I кварталом за счет снижения цен и изменения в структуре реализации.

Индекс цен фиксированного состава рассчитаем по уже известной формуле:



Таким образом, цена товара на двух рынках снизилась на 7,9% во II квартале по сравнению с I кварталом.



Средняя цена товара снизилась на 8% во II квартале по сравнению с I кварталом за счет изменения структуры реализации.

Проверим взаимосвязь:




^ Контрольные вопросы

1) Дайте определение сводного индекса.

2) Назовите формы сводного индекса.

3) Как связаны между собой цепные и базисные индексы?

4) Как строятся системы индексов с переменными и постоянными весами?

5) Чем отличаются территориальные индексы от динамических?

6) Напишите формулы конкретных индексов, которые Вы знаете.


^ Задания для самостоятельной работы

1   2   3   4   5



Похожие:

Методические указания и контрольные работы для студентов-заочников iconМетодические указания для выполнения контрольной работы для студентов-заочников
Методические указания разработаны на кафедре «Прикладная экономика» пгта и предназначены для студентов-заочников
Методические указания и контрольные работы для студентов-заочников iconМетодические указания для выполнения контрольной работы для студентов-заочников
Методические указания разработаны на кафедре «Прикладная экономика» пгта и предназначены для студентов заочной формы обучения
Методические указания и контрольные работы для студентов-заочников iconКонтрольные вопросы для подготовки к экзамену Методические указания по выполнению контрольной работы: > 1 Задание на контрольную работу
Настоящие методические указания составлены в соответствии с требованиями Государственного образовательного стандарта высшего профессионального...
Методические указания и контрольные работы для студентов-заочников iconМетодические указания и контрольное задание для студентов специальностей
Методические указания составлены применительно к программе дисциплины «Электроизоляция и перенапряжения в электрических системах»...
Методические указания и контрольные работы для студентов-заочников iconМетодические указания по дипломному проектированию для студентов
Методические указания по дипломному проектированию для студентов специальности "Менеджмент", " Управление проектом " / Сост. Бронникова...
Методические указания и контрольные работы для студентов-заочников iconМетодические указания для выполнения контрольной работы по дисциплине «Налоги и налогообложение»
Методические указания для выполнения контрольной работы по дисциплине «Налоги и налогообложение» (для студентов заочной и заочной...
Методические указания и контрольные работы для студентов-заочников iconМетодические указания к выполнению курсовой работы по дисциплине «Методика профессионального обучения» для студентов всех форм обучения
Методические указания к выполнению курсовой работы по дисциплине «Методика профессионального обучения». Екатеринбург, фгаоу впо «Рос...
Методические указания и контрольные работы для студентов-заочников iconМетодические указания по изучению дисциплины: „ теория технических систем" для студентов ІI курса заочной формы обучения по специальности 090220 „Оборудование химических производств и предприятий строительных материалов"
Индивидуальные задания для выполнения контрольной работы
Методические указания и контрольные работы для студентов-заочников iconМетодические указания и задания к контрольным работам студентов I курса заочного отделения (кроме зпм)
Для успешного выполнения контрольной работы необходимо повторить по любому учебнику математики (Алгебра) следующие разделы
Методические указания и контрольные работы для студентов-заочников iconМетодические указания и задания к контрольной работе для студентов заочной формы обучения по специальности
Цель контрольной работы – закрепить теоретические знания и приобрести практические навыки по курсу «Экономика машиностроительного...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©sov.opredelim.com 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы