Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций icon

Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций




НазваниеПособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций
страница9/13
Дата конвертации03.08.2013
Размер2.9 Mb.
ТипДокументы
источник
1   ...   5   6   7   8   9   10   11   12   13

^ Группы агрессивных газов в зависимости от их вида и концентрации

Наименование

Концентрация, мг/м3, для групп газов




А

в

С

D

Углекислый газ

До 2000

Св. 2000

¾

¾

Аммиак

» 0,2

Св. 0,2 до 20

Св. 20



Сернистый ангидрид

До 0,5

Св. 0,5 до 10

Св. 10 до 200

Св. 200 до 1000

Фтористый водород

» 0,05

» 0,05 » 5

» 5 » 10

» 10 » 100

Сероводород

» 0,01

» 0,01 » 5

» 5 » 100

» 100

Оксиды азота*

» 0,1

» 0,1 » 5

» 5 » 25

» 25 » 100

Хлор

» 0,1

» 0,1 » 1

» 1 » 5

» 5 » 10

Хлористый водород

» 0,05

» 0,05 » 5

» 5 » 10

» 10 » 100

* Оксиды азота, растворяющиеся в воде с образованием растворов кислот.

Примечание. При концентрации газов, превышающей пределы, указанные в гр. «D» настоящей таблицы, возможность применения материала для строительных конструкций следует определять на основании данных экспериментальных исследований.

^ ПРИЛОЖЕНИЕ 2(2)

Характеристика твердых сред

(солей, аэрозолей и пыли)

Растворимость твердых сред в воде и их гигроскопичность

Наиболее распространенные соли, аэрозоли, пыли

Малорастворимые

Силикаты, фосфаты (вторичные и третичные) и карбонаты магния, кальция, бария, свинца; сульфаты бария, свинца; оксиды и гидроксиды железа, хрома, алюминия, кремния

Хорошо растворимые малогигроскопичные

Хлориды и сульфаты натрия, калия, аммония; нитраты калия, бария, свинца, магния; карбонаты щелочных металлов

Хорошо растворимые гигроскопичные

Хлориды кальция, магния, алюминия, цинка, железа; сульфаты магния, марганца, цинка, железа; нитраты и нитриты натрия, калия, аммония; все первичные фосфаты; вторичный фосфат натрия; оксиды и гидроксиды натрия, калия



ПРИЛОЖЕНИЕ 3

Упругость паров воды над насыщенными водными растворами хорошо растворимых солей при 20°С

Наимено­вание рас­творов

Давление паров воды в

Равновесная относи­тельная

Раствори­мость в 100 г воды при

Гигро­скопич­ность

солей

Па

мм рт. ст.

влажность, %

20 °С




ZnCl2

233,3

1,75

10

367

Гигроско­пичные

CaCl2

819,9

6,15

35

74,5

»

Zn(NО3)2

981,2

7,36

42

118,8

»

NH4NO3

1565,2

11,74

67

192

Малогигро­скопичные

NaNO3

1803,8

13,53

77

87,5

То же

NaCl

1817,2

13,63

78

35,9

»

NH4Cl

1855,8

13,92

79

37,5

»

Na2SO4

1893,2

14,2

81

19,2

»

(NH4)2SO4

1895,8

14,22

81

76,3

»

KCl

2005,2

15,04

86

34,4

»

CuSO4

2086,5

15,65

89

76,4

»

ZnSO4

2123,8

15,93

91

54,1

»

KNO3

2167,8

16,26

93

31,6

»

K2SO4

2306,5

17,3

99

11,1

»

CaSО4

¾

¾

¾

0,20

»

Примечание. При значениях относительной влажности воздуха, больших равновесной, на поверхности образуется конденсат.



ПРИЛОЖЕНИЕ 4

А. Метод определения эффективного коэффициента диффузии для углекислого газа в бетоне

Диффузионную проницаемость бетона определяют в зависимости от толщины нейтрализованного слоя и количества углекислого газа, поглощенного бетоном за время хранения образцов в камере с повышенным содержанием углекислого газа при заданной постоянной влажности бетона.

Диффузионная проницаемость бетона определяется на образцах, имеющих форму куба, призмы или пластины, минимальный размер рабочей грани которых должен быть не менее 7 см, а толщина — не менее 3 см. Образцы могут быть изготовлены в форме либо отобраны из конструкций. Количество образцов должно быть не менее 10. Образцы, предназначенные для испытаний, предварительно выдерживают в камере с относительной влажностью воздуха 75±3 % при температуре 20±5°С до установления постоянной массы, после чего изолируют со всех сторон, кроме одной рабочей грани, плотным покрытием, например из парафиноканифольной мастики.

Установка для проведения испытаний должна иметь постоянные параметры газовой среды: концентрацию СО2 10±0,5% по объему, относительную влажность воздуха 75±3 %, температуру 20±5°С. Возможные варианты установок для испытаний представлены в «Руководстве по определению диффузионной проницаемости бетона для углекислого газа» (НИИЖБ, М., 1974).

Образцы выдерживают в камере с углекислым газом не менее 7 сут. и не более того периода, в течение которого образец будет нейтрализован на половину своей толщины.

По истечении заданного срока образцы раскалывают в направлении, нормальном неизолированной грани. На поверхность скола пипеткой наносят 0,1 %-ный раствор фенолфталеина на этиловом спирте.

Мерной линейкой измеряют толщину слоя бетона от поверхности бетона до границы слоя, окрашенного в малиновый цвет. Измерения производят через 1 см по длине кромки образца.

Эффективный коэффициент диффузии углекислого газа в бетоне рассчитывают по формуле в см2

D = (moX2)/2Ct,

где mo — Реакционная емкость бетона или объем газа, поглощенного единицей объема бетона; X — среднеарифметическая толщина нейтрализованного слоя бетона, см; С — концентрация углекислого газа в воздухе в относительных величинах по объему; t — продолжительность воздействия газа на бетон, с. Величину реакционной емкости mo рассчитывают по формуле

mo = 0,4Цpf,

где Ц — численно равное содержанию цемента в бетоне, кг/м3; p — количество основных окислов в цементе в пересчете на СаО в относительных величинах по массе, принимается по данным химического анализа цемента; f — степень нейтрализации бетона равная отношению количества основных окислов, прореагировавших с углекислым газом, к общему их количеству в цементе.

^ Б. Метод определения агрессивной углекислоты

При определении степени углекислой коррозии содержание агрессивной углекислоты в жидкой среде может быть определено экспериментально по отдельной пробе воды или путем вычисления по содержанию свободной углекислоты в общей пробе воды на химический анализ. Содержание агрессивной углекислоты определяют экспериментально в отдельной пробе воды. Пробы воды отбирают в сухую емкость на 250 мл с хорошо подобранной пробкой, в которую предварительно помещено 2 — 3 г химически чистого карбоната кальция. Анализ проводят через 5 — 6 дней (метод Гейера),

Вычисление содержания агрессивной углекислоты проводят по разности между содержанием свободной и равновесной углекислоты.

Концентрация (СО2) свободная, мг/л, согласно требованиям ГОСТ 4979—49, должна быть определена в день отбора пробы воды на анализ.

Количество углекислоты рассчитывают по формуле:

(СО2) равновесной = а[Са2+]+b, где а и b коэффициенты, зависящие от содержания в воде ионов НСО3 , , Cl ; концентрацию Са2+, мг/л, определяют по таблице.

^ Значения коэффициентов а и b

Бикарбо­натная щелоч­ность


Суммарное содержание ионов Cl  и , мг/л

мг×

град

0—200

201—400

401—600

601—800

801—1000

более 1000

экв/л




a

b

a

b

a

b

a

b

a

b

a

b

1,05

3

0

15

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

1,4

4

0,01

16

0,01

17

0,01

17

0

17

0

17

0

17

1,8

5

0,04

17

0,04

18

0,03

17

0,02

18

0,02

18

0,02

18

2,1

6

0,07

19

0,06

19

0,05

18

0,04

18

0,04

18

0,04

18

2,5

7

0,1

21

0,08

20

0,07

19

0,06

18

0,06

18

0,05

18

2,9

8

0,13

23

0,11

21

0,09

19

0,08

18

0,07

18

0,07

18

3,2

9

0,16

25

0,14

22

0,11

20

0,1

19

0,09

18

0,08

18

3,6

10

0,2

27

0,17

23

0,14

21

0,12

19

0,11

18

0,1

18

4

11

0,24

29

0,2

24

0,16

22

0,15

20

0,13

19

0,12

19

4,3

12

0,28

32

0,24

26

0,19

23

0,17

21

0,16

20

0,14

20

4,7

13

0,32

34

0,28

27

0,22

24

0,2

22

0,19

21

0,17

21

5

14

0,36

29

0,32

29

0,25

26

0,23

23

0,22

22

0,19

22

5,4

15

0,4

38

0,36

30

0,29

27

0,26

24

0,24

23

0,22

23

5,7

16

0,44

41

0,4

32

0,32

28

0,29

25

0,27

24

0,25

24

6,1

17

0,48

43

0,44

34

0,36

30

0,33

26

0,3

25

0,28

25

6,4

18

0,54

46

0,47

37

0,4

32

0,36

28

0,33

27

0,31

27

6,8

19

0,61

48

0,51

39

0,44

33

0,4

30

0,37

29

0,34

28

7,1

20

0,67

51

0,55

41

0,48

35

0,44

31

0,41

30

0,38

29

7,5

21

0,74

53

0,6

43

0,53

37

0,48

33

0,45

31

0,41

31

7,8

22

0,81

55

0,65

45

0,58

38

0,53

34

0,49

33

0,44

32

8,2

23

0,88

58

0,7

47

0,63

40

0,58

35

0,53

34

0,48

33

8,6

24

0,96

60

0,76

49

0,68

42

0,63

37

0,57

36

0,52

35

9

25

1,04

63

0,81

51

0,73

44

0,67

39

0,61

38

0,56

37

10,7

30

1,44

75

1,06

61

0,98

54

0,87

49

0,81

43

0,76

47

14,3

40

2,34

95

1,56

81

1,48

74

1,27

69

1,21

68

1,16

67

17,8

50

3,34

120

2,16

102

1,98

94

1,67

79

1,61

88

1,56

87

21,3

60

4,44

145

2,66

123

2,48

114

2,17

99

2,01

98

1,96

97

25

70

5,44

165

3,16

143

2,98

134

2,67

119

2,41

118

2,36

117

28,5

80

6,54

195

3,76

163

3,48

154

3,07

139

2,81

138

2,76

137

32,1

90

7,64

215

4,36

183

3,98

174

3,47

159

3,2

148

3,16

147

ПРИЛОЖЕНИЕ 5

Химические добавки, применяемые для повышения коррозионной стойкости

Таблица 1

Условные обозначения добавок и их дозировки


Вид добавок


Добавки

Условные обозначе­ния добавок

Рекомендуе­мые дозировки добавок*

1. Воздухо­вовлекающие

Смола нейтрализованная воздухововлекающая

СНВ

0,005 — 0,035




Клей талловый пековый

КТП

0,005 — 0,035




Омыленный талловый пек

отп

0,005 — 0,035




Смола древесная омылен­ная

СДо

0,005 — 0,035




Вспомогательный препарат

оп

0,005 — 0,035




Сульфонол

с

0,005 — 0,035

2.Пластифи­цирующие

Щелочной сток производ­ства капролактама

щспк

0,1 — 0,5

воздухововлекающие

Модифицированный щело­чной сток производства капролактама

ЩСПК-м

0,05 — 0,2




Черный сульфатный щелок

ЧСЩ

0,05-0,2




Модифицированная синте­тическая поверхностно-активная

СПД-м

0,05 — 0,02




Смола омыленная водорас­творимая

ВЛХК







Понизитель вязкости фенольный лесохимический

ПФЛХ

0,05 — 0,2




Лесохимическая

ЛХД

0,05 — 0,2




Нейтрализованный черный контакт

НЧК

0,1¾0,2




Контакт черный нейтрали­зованный рафинированный

КЧНР

0,1¾0,2

3. Газообра­зующие

Пудра алюминиевая

ПАК

0,01 — 0,03

4. Гидрофо­бизирующие

Полифенилэтоксилоксаны**

фэс-50; ФЭС-66

1 — 2;

1 — 2

5. Гидрофо­бизирующие

Этилсиликонат натрия

гкж-10

0,05¾0,2

воздуховов-

Метилсиликонат натрия

ГКЖ-11

0,05 — 0,2

лекающие

Алюмометилсиликонат натрия

АМСР

0,05 — 0,2




Мылонафт

М1

0,05¾0,2

6. Гидрофо­бизирующие

Полигидросилоксан 136-41

ГКЖ-94

0,05 — 0,1

газовыделя­ющие

Полигидросилоксан 136-157м

ГКЖ-94М

0,03 — 0,08




Этилгидридсесквиоксан

ПГЭН

0,05 — 0,1

7. Уплотня­ющие

Диэтиленгликолевая смола

ДЭГ-1

1¾1,5




Триэтиленгликолевая смола

ТЭГ-1

1¾1,5




Полиаминная смола

С-89

0,6 — 1,5




Битумная эмульсия (эмульбит)

БЭ

5 — 10




Сульфат алюминия

СА

1,5¾3




Сульфат железа

СЖ

1,5¾3




Нитрат железа

НЖ

1,5 — 3




Нитрат кальция

НК

1,5 — 3

8. Суперпла­стификаторы

Разжижитель С-3

С-3

0,3 — 1




10-03

10-03

0,3¾1




Дофен

Дф

0,5 — 1




Меламинформальдегидная смола МФ-АР

МФ-АР

0,3 — 1




НКНС 40-03

40-03

0,2¾1




Разжижитель СМФ

СМФ

0,3¾1

9. Пластифи­цирующие

Лигносульфонат техничес­кий

ЛСТ

0,15¾0,5




Модифицированные лигно­сульфонаты***










Мелассная упаренная последрожжевая барда

УПБ

0,15 — 0,3




Водорастворимый препарат ВРП-1

ВРП-1

0,005 — 0,03




Водорастворимый препарат С-1

С-1

0,005 — 0,03




Плав дикарбоновых кислот

ПДК

0,4¾1




Аплассан

АПЛ

0,4 — 1

10. Стабили­зирующие

Полиэтиленоксид, поли­оксиэтилен

ПОЭ

0,02¾0,2

11. Ингиби­торы

Нитрит натрия

НН

2 — 3

коррозии стали

Тетраборат натрия

ТБН

0,5¾1,5




Бихромат натрия

БХН

0,5




Бихромат калия

БХК

0,5




Нитрит-нитрат кальция

ННК

2 — 3




Катапин-ингибитор

КН-1

0,025¾0,15

* Дозировки добавок указаны в % массы цемента в пересчете на сухое вещество добавки или 100 %-ный продукт и зависят от вида применяемого цемента, состава бетона, технологии изготовления изделий и конструкций и условий их эксплуатации.

** Полифенилэтоксилоксаны могут быть использованы только в бетонах нормального твердения.

*** Модифицированные лигносульфонаты (ЛСТМ-2, ХДСК-1, ХДСК-3, НИЛ-21, МЛС, ОКЗИЛ, МТС-1) повышают стойкость бетонов за счет водоредуцирующего действия (В/Ц может быть снижено на 10—15 %).



Таблица 2
1   ...   5   6   7   8   9   10   11   12   13



Похожие:

Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconЦентральный ордена трудового красного знамени научно-исследовательский и проектный институт строительных металлоконструкций им. Мельникова
По контролю состояния строительных металлических конструкций зданий и сооружений в агрессивных средах, проведению обследований и...
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconМинистерство строительства Российской Федерации минстрой россии нормативные показатели расхода материалов сборник 07 монтаж бетонных и железобетонных конструкций сборных
В настоящий сборник включены строительные процессы на монтаж сборных бетонных и железобетонных конструкций в промышленном и жилищно-гражданском...
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconПособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов
Рекомендовано к изданию решением секции несущих конструкций научно-технического совета цниипромзданий Госстроя СССР
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconПособие по проектированию анкерных болтов для крепления строительных конструкций и оборудования
Центральный научно-исследовательский и проектно-экспериментальный институт промышленных зданий и сооружений
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconНормативные показатели расхода материалов устройство бетонных и железобетонных конструкций монолитных Сборник 06 бетонные и железобетонные конструкции монолитные
Кузнецовым В. И., Степановым В. А., Шутовым А. А. (Главное управление ценообразования, сметных норм и расхода строительных материалов...
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconСовременные методы защиты от коррозии. Вопросы
В. С. Рыбальченко «Начала электрохимии и коррозии металлов» минг им. Губкина – М.,1991
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconСправочное пособие к сниП
Центральный научно–исследовательский институт строительных конструкций им. В. А. Кучеренко (цнииск им. В. А. Кучеренко) Госстроя...
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconКод эмитента: 0
Открытое акционерное общество по производству мостовых железобетонных конструкций ОАО “Мостожелезобетонконструкция”
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconГосударственный проектный и научно-исследовательский институт по проектированию учреждений здравоохранения “Гипронииздрав” пособие по проектированию учреждений здравоохранения
Рекомендовано к изданию научной секцией Научно-технического Совета “Гипронииздрава”
Пособие по проектированию защиты от коррозии бетонных и железобетонных строительных конструкций iconМинстрой россии торговый дом «Инженерное оборудование» пособие по проектированию автономных инженерных систем одноквартирных и блокированных жилых домов
Пособие по проектированию автономных инженерных систем од­ноквартирных и блокированных жилых домов (водоснабжение, канализа­ция,...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©sov.opredelim.com 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы