Справочное пособие к снип проектирование подпорных стен и стен подвалов icon

Справочное пособие к снип проектирование подпорных стен и стен подвалов




НазваниеСправочное пособие к снип проектирование подпорных стен и стен подвалов
страница7/18
Дата конвертации03.08.2013
Размер3.9 Mb.
ТипДокументы
источник
1   2   3   4   5   6   7   8   9   10   ...   18

Расчет устойчивости стены против сдвига


Сдвигающую силу Fsa определяем по формулам (16)-(18) при h = yв = 7,5 м:

Fsa,g = Pgh/2 = 66,64×7,5/2 = 249,9 кН;

Fsa,q = Pqyв = 27,6×7,5 = 207 кН;

Fsa = Fsa,y + Fsa,q = 249,9 + 207 = 456,9 кН.

Интенсивность вертикального давления от собственного веса грунта и нагрузки определяем по формулам (53)-(56):

Pvg = Pg tg(e + j¢I)/tge = 66,64 tg(34°+22°)/tg 34° = 146,48 кПа;

Рvq = Pq tg(e + j¢I)/tge = 27,6 tg(34£+22°)/tg34° = 60 кПа;

Р¢vg = g¢Igfh = 18×1,2×7,5 = 162 кПа;

P¢¢vg = g¢Igfd = 18×1,2×1,5 = 32,4 кПа.

Определяем сумму проекций всех сил на вертикальную плоскость

Fv = (Pvg + vg + 2Pvq)(b - t)/2 + P¢¢vgt =

(146,48 + 162 + 2×60)(6 - 1,1)/2 + 32,4×1,1 = 1085,42 кН.


1 случай (b1 = 0)

Пассивное сопротивление грунта Er определяем по формуле (22) при Er = d = 1,5 м; gI = 19кН/м3; lr = 1; с1 = 5 кПа (п. 6.7)

Er = gIlr/2 + c1hr(lr - 1)/tgjI = 19×1,52×1/2 + 0 = 21,38 кН.

Удерживающую силу Fsr определяем по формуле (19)

Fsr = Fv tg(jI - b) + bc1 + Er = 1085,42 tg(24°-0°) + 6×5 + 21,38 = 534,61 кН.

Проверку устойчивости стены проводим из условия (15)

Fsa = 456,9 кН < gcFsr/gn = 1×534,61/1,1 = 486,01 кН.


2 случай (b2 = jI/2 = 12°)

lr = tg2(45°+jI/2) = tg2(45°+24°/2) = 2,37.

Сумму проекций всех сил на вертикальную плоскость, с учетом веса выпираемого из-под подошвы грунта, определяем по формуле (21):

Fv = Fsa tg(e + j¢I) + g¢Igf[h(b - t)/2 + td] + gI tgbb2/2 =

456,9 tg(34°+22°) + 18×1,2[7,5(6 - 1,1)/2 + 1,1×1,5] + 19 tg12°×6°/2 = 182,71 кН;

Er = 19×2,782×2,37/2 + 17×2,78(2,37 - 1)tg24° = 319,43 кН;

Fsr = 1182,71 tg(24°-12°) + 6×17 + 319,43 = 672,87 кН;

Fsa = 456,9 кН < 1×672,87/1,1 = 611,7 кН.


3 случай (b3 = jI = 24°)

Fv = 456,9 tg(34°+22°) + 18×1,2[7,5(6 - 1,1)/2 + 1,1×1,5] +

+ 19 tg24°×62/2 = 1262,26 кН;

hr = 1,5 + 6 tg24° = 4,17 м;

Er = 19×4,172×2,37/2 + 17×4,17(2,37 - 1)/tg24° = 609,66 кН;

Fsr = 1262,26 tg(24°-24°) + 6×17 + 609,66 = 711,66 кН;

Fsa = 456,9 кН < 1×711,66/1,1 = 647 кН.

Условие (15) для всех трех случаев удовлетворено.

Приведенный угол наклона к вертикали dI равнодействующей внешней нагрузки:

tg dI = Fsa/Fv = 456,9/1085,42 = 0,4209;

sin jI = sin 24° = 0,4067 < tgdI; dI = 24°.

Прочность грунтового основания удовлетворена.


^ Расчет основания по деформациям


Расчетное сопротивление грунта основания R определяем по формуле (39)



где gс1 = 1,25; gс2 = 1 (по табл. 6); k = 1 (по п. 6.15); Мg = 0,84; Мq = 4,37; Мс = 6,9 (по табл. 7 при jII = 26°); d = 1,5 м.

Угол наклона плоскости обрушения к вертикали

;

q0 = 33°.

l = 0,42 (по табл. 3 прил. 2 при d = j¢II = 24°; e = 34°).

Интенсивность нормативного давления грунта на стену:

Pg = [17×1×7,5×0,42 - 10(0,63 + 0,69)]7,5/7,5 = 47,2 кПа;

К1 = 2×0,42cos33°cos34°/sin(33°+34°) = 0,63;

К2 = 0,42[sin(33°-34°)cos(33°+0°)/sin33°cos(0°-34°)sin(33° + 34°)] + tg34° = 0,69;

Рq = 50×1×0,42 = 21 кПа;

Fsa,g = 47,5×7,5/2 = 177 кПа;

Fsa,q = 21×7,5 = 157,5 кН;

Fsa = 177 + 157,5 = 334,5 кН;

Fv = 334,5 tg(34°+24°) + 17×1,2[7,5(6 - 1,1)/2 + 1,1×1,5] + 18 tg 0°×62/2 = 943,91 кН;

h* = [Fsa,gh/3 + Fsa,q(h - ya - yв/2)]/Fsa = [177×7,5/3 + 157,5(7,5 - 0 - 7,5/2)] = 3,09 м;

М0 = Fsa[h* - tg(e + j¢)(b/2 - h*tge)] + g¢gf(b - t)[h(b - 4t) + 6td]/12 =

334,5[3,09 - tg(34°+24°)(6/2 - 3,09 tg34°)] +

17×1,2(6 - 1,1)[7,5(6 - 4×1,1) + 6×1,1×1,5]/12 = 724,27 кН×м;

е = М0/Fv = 724,27/943,91 = 0,77 м;

b/6 = 6/6 = 1 м > e = 0,77 м;

= Fv(1 ± 6e/b)/b;

рmax = 943,91(1 + 6×0,77/6)/6 = 278,45 кПа;

pmin = 943,91(1 - 6×0,77/6)/6 = 36,18 кПа.

Расчет основания по деформациям удовлетворен.


Определение усилий в элементах (на 1 м стены)

Расчетные усилия определяем по формулам п. 6.20.


^ Вертикальная плита


Сечение 1 - 1 (у1 = hв = 2,5 м)

М1-1 = - у3(Рgу/3h + Pq)/2 = 2,52(66,64×2,5/3×7,5 + 27,6)/2 = - 109,39 кН×м;

Q1-1 = у (Рgу/2h + Pq) = 2,5(66,64×2,5/2×7,5 + 27,6) = 96,77 кН.


Сечение 2 - 2 (у ³ hв)

Первый случай загружения для М2-2:

U1 = [h2Pg + 3Pq(h - hв)2]/6(h - hв) = [7,52×66,64 +

+ 3×27,6(7,5 - 2,5)2]/6(7,5 - 2,5) = 193,97 кН;

tg a = 4/4,7 = 0,851; a » 40°;

V1 = U1/tg a = 193,97/0,851 = 227,93 кН.

Расстояние у, при котором в сечении вертикального элемента действует максимальный изгибающий момент Мmax, определяем из приведенного ниже уравнения при условии частичного загружения временной нагрузкой призмы обрушения:

у2 + 2Рqhy/Рg - 2h[Pqhв + U1 - V1а/(h - hв)]/Pg = 0;

у2 + 2×27,6×7,5у/66,64 - 2×7,5[27,6×2,5 + 193,97 - 227,93×0,3/(7,5 - 2,5)]/66,64 = 0;

у2 + 6,21у - 56,1 = 0.

Решая приведенное выше уравнение, получаем у = 4,99 м

М2-2 = - у3Рg/6h - Pq(y - hв)2/2 + U1(y - hв) + V1а(h - y)/(h - hв) =

= - 4,993×66,64/6×7,5 - 27,6(4,99 - 2,5)2/2 + 193,97(4,99 - 2,5) +

227,93×0,3(7,5 - 4,99)/(7,5 - 2,5) = 247,73 кН×м.

Определяем максимальную поперечную силу Q2-2 при полном загружении призмы обрушения временной нагрузкой:

U2 = h2(3Рq + Pg)/6(h - hв) = 7,52(3×27,6 + 66,64)/6(7,5 - 2,5) = 279,75 кН;

V2 = U2/tg a = 279,75/0,851 = 328,73 кН.

Поперечная сила при у = 2,5 м:

Q2-2 = у2Рg/2h + yPq - U2 + V2а/(h - hв) = 2,52×66,64/2×7,5 +

+ 2,5×27,6 - 279,75 + 328,73×0,3/(7,5 - 2,5) = - 163,69 кН.

Поперечная сила при у = 7,5 - 0,7 = 6,8 м:

Q2-2 = 6,82×66,64/2×7,5 + 6,8×27,6 - 279,75 + 328,73×0,3/(7,5 - 2,5) = 133,08 кН.


Анкерная тяга:

Усилие в тяге, установленной с интервалом 1,5 м:

S = U2l/sin a = 279,75×1,5/sin 40° = 652,81 кН.

С учетом возможного зависания грунта над тягой (п. 6.21):

Sp = Ski = 652,81×1,5 = 979,21 кН.


Фундаментная плита

Расчетное давление под подошвой фундаментной плиты определяем по формулам:

М0 = -Рvg(b - t)(b + 2t)/12 - Pvq(b - t)t/2 + vg(b - t)(b - 4t)/12 +

+ P¢¢vgt(b - t)/2 + V2(b/2 - b2) + V2(b/2 - t) + U2а =

= - 146,48(6 - 1,1)(6 + 2×1,1)/2 + 328,73(6/2 - 0,6) + 328,73(6/2 - 1,1) +

+ 279,75×0,3 = 1038,47 кН×м;

е = М0/F = 1038,47/1085,42 = 0,96;

= 1085,42(1 ± 6×0,96/6)/6;

рmax = 354,57 кПа;

рmin = 7,24 кПа.

Определяем поперечные силы и изгибающие моменты в фундаментной плите.


Сечение 3 - 3 (x3 = 1,1 м)

G1 = Pu''x3 = 32,4 × 1,1 × 35,64 кН;

M3 - 3 = -G1x3/2 + pmaxx33(pmin/pmax + 3b/x3 - 1)/6b = -35,64 × 1,1/2 + +354,57 × ×1,13(7,24/354,57 + 3 × 6/1,1 - 1)/6 × 6 = 182,03 кН×м;

Q3 - 3 = G1 - pmaxx32(pmin/pmax+2b/x3 -1)2b = 35,64 - 354,57 × 1,12(7,24/354,57 + + 2 × 6/1,1 - 1)/2 × 6 = -119,38 кН.


Сечение 4 - 4 (x4 = b2 = 0,6 м)

G4 = [Pug (b - t - x4)/(b - t) + P'ugx4/(b - t)+ Pug]x4/2 = [146,48(6 - 1,1 - 0,6)/(6- - 1,1) + 162 × 0,6/(6 - 1,1) + 146,48]0,6/2 = 88,46 кН;

M4 - 4 = -Pugx42/3 - x42[Pug(b - t - x4) + P'ugx4]/6(b - t) - Puqx42/2 + +pminx43(pmax/pmin + 3b/x4 - 1)6b = -146,48 × 0,62/3 - 0,62[146,48(6 - 1,1 - 0,6)+ 162 × 0,6]/6(6 - 1,1) - 60 × 0,62/2 + 7,24 × 0,63(354,57/7,24 + 3 × 6/0,6 - 1)/6 × ×6 = 33,89 кН × м;

Q4 - 4 = -G4 - Pugx4 + pminx42(pmax/pmin + 2b/x4 - 1)/2b = - 88,46 - 60 × 0,6 + 7,24× ×0,62(354,57/7,24 + 2 × 6/0,6 - 1)/2 × 6 = -109,7 кН.


Сечение 5 - 5 (x5 = b2 = 0,6 м)

G5 = G4 = 88,46 кН;

M5 - 5 = -Pugx52/3 - x52[Pug(b - t - x5) + P'ugx5]/6(b - t) - Pugx52/2 + +pminx53(pmax/pmin + 3b/x5 - 1)/6b + V2(x5 - b2) + U2a = -146,48 × 0,62/3 - 0,62[146,48(6 - 1,1 - 0,6) + 162 × 0,6]/6(6 - 1,1) - 60 ×0,62/2 + 7,24 × ×0,63(354,57/7,24 + 3 × 6/0,6 - 1)/6 × 6 + 328,73(0,6 - 0,6) + 279,75 × 0,3 = =50,04 кН × м;

Q5 -5 = -G5 - Puqx5 + pminx52(pmax/pmin + 2b/x5 - 1)/2b + V2 = -88,46 - 60 × 0,6 + +7,24 ×0,62(354,57/7,24 + 2 × 6/0,6 - 1)/2 × 6 + 328,73 = 219,03 кН.

Расстояние, при котором в фундаментной плите действует максимальный изгибающий момент, определяем из уравнения

-[Pug(b - t - x5)/(b - t) + P'ugx5/(b - t) + Pug]x/2 - Puqx5 + pminx52(pmax/pmin + +2b/x5 - 1)/2b + V2 = 0;

-[146,48(6 - 1,1 - x5)/(6 -1,1) + 162x5/(6 - 1,1) + 146,48]x/2 - 60x5 + +7,24x52(354,57/7,24 + 2 × 6/x5 - 1)/2 × 6 + 328,73 = 0.

Преобразуя, получаем уравнение

x2 - 7,28x + 12,01 = 0,

откуда находим

x = 2,53 м.

Максимальный пролетный момент в фундаментной плите (при x5=2,53 м):

M5 - 5 = -146,48 × 2,532/3 - 2,532[146,48(6 - 1,1 - 2,53) + 162 × 2,53]/6(6 -1,1)- - 60 × 2,532/2 + 7,24 × 2,533(354,57/7,24 +3 × 6/2,53 - 1)/6 × 6 + 328,73(2,53 - -0,6) + 279,75 × 0,3 = 228,39 кН × м.


^ Пример 4. Расчет щелевого паза в подпорной стене уголкового профиля


Дано. Исходные данные по внешней нагрузке, общие габариты конструкции, характеристики грунта основания и засыпки, интенсивности давления грунта засыпки (Pq = 11,7 кПа, Pg = 45,75 кПа, Pug = 117,96 кПа, P'ug = 122,4 кПа, Puq = 30,17 кПа), интенсивности давления грунта основания на подошву фундаментной плиты (pmin = 0, pmax = 278,81 кПа), c0 = 1,23 м по примеру 2. Сопряжение вертикального ограждающего элемента осуществляется в щелевой паз фундаментной плиты (рис. 6). Материал фундаментной плиты - бетон класса В15 (Rb = =8,5 МПа = 8,5 × 103 кПа, Rbt = 0,75 МПа = 7,5 × 102 кПа, gb2 = 1), арматура класса AIII (Ps = Rsc = 365 МПа = 3,65 × 105 кПа, Rsw = =290МПа = 2,9 × 105 кПа).

Требуется произвести расчет и армирование щелевого паза.

Изгибающий момент и поперечную силу от горизонтального давления грунта в месте сопряжения вертикальной плиты с фундаментной (y = 4,5 м) определяем по формуле (41)

M1-1=Pgy3/6h + Pq(y - ya)2/2 = 45,75×4,53/6×6 + 11,7(4,5 - 0)2/2 =234,26 кН×м;

Q1 - 1 = Pgy2/2h + Pq(y - ya) = 45,75×4,52/2×6 + 11,7(4,5 - 0) = 129,85 кН.

Изгибающий момент и поперечную силу в сечении фундаментной плиты (x3 = 2,2 м) определяем по формулам (45) и (46):

M3 - 3 = pmax(3c0 - b + x3)3/18c0 - Pugx32/2 - Puq(x3 - x)2/2 - x33(P'ug - P'ug)/6(b - t) = 278,81 (3×1,23 - 3,9 + 2,2)3/18 × 1,23 - 117,96 × 2,22/2 - 30,17(2,2 - 0)2/2 - -2,23(122,4 - 117,96)/6(3,9 - 0,7) = -261,69 кН×м;




Рис. 6. К расчету уголковой подпорной стены составного сечения

а - конструктивная схема; б - схема загружения конструкции стены




Рис. 7. К расчету уголковой подпорной стены составного сечения

а - эпюры моментов; б - эпюры поперечных сил

Q3 -3=pmax(3c0 - b + x3)2/6c0 - Pugx3 - Pugx3 - Puq(x3 - x) - x32(P'ug - P'ug)/2(b - t) = = 278,81(3×1,23 - 3,9 +2,2)2/6×1,23 - 117,96×2,2 - 30,17(2,2 - 0) - 2,22(122,4 - -117,96)/2(3,9 - 0,7) = -179,63 кН.

Эпюры моментов и поперечных сил см. на рис. 7.


^ Определение усилий в щелевом пазе


Горизонтальные и вертикальные составляющие (рис. 8) внутренней пары определяем по формулам п. 6.22:

Pr = Mt - 1sin2a/0,75l = 234,26sin253°30'/0,75×0,9 = 224,23 кН;

Pв = M1 -1sina × cosa/0,75l = 234,26sin53°30' cos 53°30'/0,75×0,9 = =165,76 кН,

где tga = 0,75l/h = 0,75×0,9/0,5 = 1,35; a = 53°30'.




^ Рис. 8. К расчету щелевого паза


Сечение 4 - 4

M4 - 4 = (Pr + Q1 - 1)0,9l = (224,23×0,15×0,9 +165,76×0,25 = 71,71 кН×м;

Q4 - 4 = Pr + Q1 - 1 = 224,23 + 129,85 = 354,08 кН.

1   2   3   4   5   6   7   8   9   10   ...   18



Похожие:

Справочное пособие к снип проектирование подпорных стен и стен подвалов iconСборник №53 Стены гэснр-2001-53
В настоящем сборнике содержатся нормы на выполнение работ по ремонту каменных стен с перекладкой отдельных участков, смене отдельных...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconСправочное пособие к сниП
Центральный научно–исследовательский институт строительных конструкций им. В. А. Кучеренко (цнииск им. В. А. Кучеренко) Госстроя...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconСправочное пособие к сниП
Рекомендовано к изданию секцией научно-технического совета Института общественных зданий Минстроя России (бывший цнииэп учебных зданий...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconСправочное пособие к снип отопление и вентиляция жилых зданий
Центральный научно исследовательский и проектно экспериментальный институт инженерного оборудования городов, жилых и общественных...
Справочное пособие к снип проектирование подпорных стен и стен подвалов icon4 6 Метод прямой угловой засечки
Отклонение от отвесной линии колонн стеновых панелей, стен и других конструкций и их элементов
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconТехническая эксплуатация жилых и общественных зданий
Утрата связи отдельных кирпичей с кладкой наружных стен, угрожающая безопасности людей
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconПособие по проектированию жилых зданий. Вып. 3 (к сниП 08. 01-85) перекрытия 1
При наличии технического этажа между жилой частью дома и встроенными шумными помещениями самонесущий потолок не требуется. Звукоизоляцию...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconПособие по организации скоростного строительства автомобильных дорог и аэродромов с использованием комплектов машин типа дс-100 (в развитие сниП 01. 01-85, сниП 06. 03-85, сниП 06. 06-88)
По организации скоростного строительства автомобильных дорог и аэродромов с использованием комплектов машин типа дс-100 (в развитие...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconШахтные реакторы второй ступени паровоздушной конверсии
Пламя на­стилается на наклонные боковые стенки печи. Большая часть тепла (60-70%) передается реакционным трубам радиацией от раскаленных...
Справочное пособие к снип проектирование подпорных стен и стен подвалов iconСборник №67 Электромонтажные работы гэснр-2001-67
В настоящем сборнике содержатся нормы на выполнение работ по ремонту и демонтажу электрического освещения и силовых проводок в жилых...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©sov.opredelim.com 2000-2015
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы